	SQL Server Reporting Services	Reporting Services Disaster Recovery

	SQL Server Reporting Services	Reporting Services Disaster Recovery
Many organizations now rely on their reporting solutions for day-to-day business as much as the underlying OLTP systems. For some organizations, being able to report on data in real time can be as important as the availability of their underlying OLTP systems. So like any important database solution, you need to plan on how to recover your reporting solution quickly and efficiently, to keep your business running smoothly. For most medium and small companies, that will mean using the tools available to you with SQL Standard Edition.		In this article I will show you how to setup a Reporting Services solution that will allow you to quickly switch from one server to another, should your primary report server / report server database fail or should you need to switch your service to allow you to carry out server maintenance tasks, reducing downtime of the live system.		The problem:	To implement a disaster recovery solution for Reporting Services using tools available within SQL Server standard Edition, requiring minimal involvement to restore Reporting Services to an operational state.		The Solution:	Using two server built to the same specification both of which have SQL Server and Reporting Services installed, we will build a reporting solution that will utilize database mirroring, that can fail over a Reporting Services solution to the mirror server quickly, efficiently and without the need for human interaction.		 (To implement automatic failover, we will need a third server, with SQL 2005 express, which will act as the mirroring service witness).		Before we begin:	To shorten this article, I will assume the following:		You have server administration right and database admin rights.	You have configured 2 servers (ideally identical) with SQL server & Reporting Services Configured & ReportServer and ReportServerTempDB are configured on each server.	SQL Server Database Engine and SQL Reporting Services is started on both server.	I will put in some details relating to database mirroring, but it’s worth reading up on database mirroring, as your requirements may differ slightly and ultimately, it will give you a better understanding of what we are doing here.		Provided we have the above we can setup the reporting solution DR solution. Here are the key things we are going to do:	Initialize the Reporting Services ‘Principle’ and ‘mirror’ Servers setup.	Configure the ReportServer mirroring session.	Configure the SQL Agent jobs to handle the SSRS switch over	Configure the Alerts that will initiate SQL Agent jobs		In this tutorial, I’ll refer to the two servers as SQLTEST01 (my live server) and SQLTEST02 (my backup/failover server). For the proposed solution we will only need 1 server running the report server service as the report server databases. Here are the steps to setup the solution.	Prepare the reporting services 	First off, we need to stop the reporting service on SQLTEST02 Reporting services:	Connect to SQLTEST02 and open Reporting Service Manager	Stop the reporting service			The next, is an important step – we need to backup the Reporting Service Encryption Key	Connect to SQLTEST01	Open Report Services Configuration and connect	Select Encryption Keys		Backup the encryption key, by selecting Backup entering a file location, and specifying a backup file password.		Considerations:	As general rule of practice, if you’re using reporting services, you should already have a backup of the encryption key, however you may want to create a new backup file with a suitable name and place the file in a location that is backed up. Additionally, the password should be something suitable to protect any reports that need to be keep secure.		As I’m starting from scratch I’ll create my backup file sqltest01-ssrs-encr-key.snk, with a password pa$$w0rd and I’ve placed it in C:\SQL Server Files\SSRS\ so I can easily identify the file.		Make a note of these as these will be needed later in the failover process.			Last of all, copy the encryption key to the initial backup/failover server.		For consistency, I would copy the encryption key backup to SQLTEST02 and store the file in the same folder structure (i.e. c:\SQL Server Files\SSRS)..	Initialize the Reporting Services ‘Principle’ and ‘mirror’ Servers		Open SSMS and connect SQLTEST01 and SQLTEST02	On SQLTEST02 expand the database node and delete ReportServer and ReportServerTempDB. 		Next we need to backup the ReportServer and ReportServerTempDB, on SQLTEST01 (which is going to be our initial principle server) and restore the database onto SQLTEST02		Important: when initializing the mirroring session, it’s important that no changes are made and no transactions logged in the database, or the mirror will fail to initialize.			Connect to SQLTEST01	Open a new query window and create a backup script for the databases		To make life easier I created C:\DatabaseBackups on SQLTEST01 and SQLTEST02 		BACKUP DATABASE ReportServer	TO DISK = 'C:\Database Backups\ReportServer_principle.bak'	WITH	FORMAT			,INIT			, NAME = 'ReportServer DB'			,DESCRIPTION = 'ReportServer DB backup for Principle Mirror initialisation DB'	GO 	BACKUP LOG ReportServer	TO DISK = 'C:\Database Backups\ReportServer_principle.bak'	WITH	NAME = 'ReportServer Tx Log'			,DESCRIPTION = 'ReportServer Log backup for Principle Mirror initialisation'	GO 		Repeat for the Report Server Temp DB. (Although by it’s definition the report server temp DB is for temporary information, it is possible this could hold information required when the ReportServer DB is failed over, so subsequently I mirror the ReportServerTempDB and fail the database over when the ReportServer db is failed over.		BACKUP DATABASE ReportServerTempDB	TO DISK = 'C:\Database Backups\ReportServerTempDB_principle.bak'	WITH	FORMAT			,INIT			, NAME = 'ReportServerTempDB DB'			,DESCRIPTION = 'ReportServerTempDB DB backup for Principle Mirror initialisation DB'	GO 	BACKUP LOG ReportServerTempDB	TO DISK = 'C:\Database Backups\ReportServerTempDB_principle.bak'	WITH	NAME = 'ReportServerTempDB Tx Log'			,DESCRIPTION = 'ReportServerTempDB Log backup for Principle Mirror initialisation'	GO		Execute the backup commands and verify the backups are successful		Processed 328 pages for database 'ReportServer', file 'ReportServer' on file 1.	Processed 2 pages for database 'ReportServer', file 'ReportServer_log' on file 1.	BACKUP DATABASE successfully processed 330 pages in 0.304 seconds (8.892 MB/sec).	Processed 3 pages for database 'ReportServer', file 'ReportServer_log' on file 2.	BACKUP LOG successfully processed 3 pages in 0.034 seconds (0.572 MB/sec).		Processed 176 pages for database 'ReportServerTempDB', file 'ReportServerTempDB' on file 1.	Processed 2 pages for database 'ReportServerTempDB', file 'ReportServerTempDB_log' on file 1.	BACKUP DATABASE successfully processed 178 pages in 0.207 seconds (7.041 MB/sec).	Processed 3 pages for database 'ReportServerTempDB', file 'ReportServerTempDB_log' on file 2.	BACKUP LOG successfully processed 3 pages in 0.043 seconds (0.440 MB/sec).			Copy the backup files from ReportServer_principle.bak and ReportServerTempDB_principle.bak from \\SQLTEST01\c$\Backup Databases\ to \\SQLTEST01\c$\Backup Databases\		Now we need to restore the databases to SQLTEST02 (the initial mirror Server). Note: Here we need to restore the database and transaction logs for ReportServer and ReportServerTempDB, BUT we need to use WITH NORECOVERY		RESTORE DATABASE [ReportServer] 	FROM DISK = N'C:\Database Backups\ReportServer_principle.bak' 	WITH FILE = 1		,MOVE N'ReportServer' TO N'E:\SQL_Data\ReportServer.mdf'		,MOVE N'ReportServer_log' TO N'E:\SQL_Data\ReportServer_log.LDF'		,NORECOVERY		,NOUNLOAD		,REPLACE	GO		RESTORE LOG [ReportServer] 	FROM DISK = N'C:\Database Backups\ReportServer_principle.bak' 	WITH FILE = 2		,NORECOVERY		,NOUNLOAD	GO		RESTORE DATABASE [ReportServerTempDB] 	FROM DISK = N'C:\Database Backups\ReportServerTempDB_principle.bak' 	WITH FILE = 1		,MOVE N'ReportServerTempDB' TO N'E:\SQL_Data\ReportServerTempDB.mdf'		,MOVE N'ReportServerTempDB_log' TO N'E:\SQL_Data\ReportServerTempDB_log.LDF'		,NORECOVERY		,NOUNLOAD		,REPLACE	GO		RESTORE LOG [ReportServerTempDB] 	FROM DISK = N'C:\Database Backups\ReportServerTempDB_principle.bak' 	WITH FILE = 2		,NORECOVERY		,NOUNLOAD			Configure the mirroring Sessions	Now we can initialize the database mirroring session for ReportServer and ReportServerTempDB.		Note: For this example, I will configure the Principle and Mirror servers for mirroring, but optionally you can go a step further and configure a witness user, if you want automatic failover.		Open a connect to SQLTEST01	Expand the database node	Right-click the database ReportServer 	Select Tasks > Mirror…	Select Configure Security			Complete the Mirroring Security Wizard as follows:	Select Next on the wizard introduction screen	Select No for the Witness Server (if you have a witness server, you can select yes – alternatively you can configure a witness to participate in the topology at a later date. For the example I’ll leave out the witness server.	Acknowledge the Principle server settings and select Next. Note: if your running multiple instances on a server, you may need to change the mirroring port number if other instances also have mirrored databases.	For the mirror instance, 	select the database server SQLTEST02 	select Connect 	Connect to the database server 	 Once you have verified you can connect, select Next	Next Specify the service accounts for the Principle and Mirror servers, if they are different. Alternatively, leave these blank if they are the same.	Select Next	Review the configuration details and Click Finnish to complete the process:		On the principal server instance, sqltest01	Modify the following properties of the mirroring endpoint: 	Name: Mirroring	Listener Port: 5022	Encryption: Yes	Role: Partner	On the mirror server instance, sqltest02	Modify the following properties of the mirroring endpoint: 	Name: Mirroring	Listener Port: 5022	Encryption: Yes	Role: Partner	On successful completion of the Configuring Endpoints screen, click Close	Start the mirroring session.	Click OK to exit the Database Properties Mirroring GUI.		Now Repeat the same process for ReportServerTempDB		By this point, we have achieved the following:	Configured SQLTEST01 as the live reporting server . 	SQLTEST01 Reporting Service is Started	SQLTEST02 Reporting Services is Stopped	Mirror the report server databases from SQLTEST01 to SQLTEST02		Configuring SQL Server Alert and Jobs	Next we will need to configure the SQL Server alerts and Jobs that will manage the switch over process. 		First off, we will configure an SQL server job to force the database role switch from Mirror to Principle.		Secondly, the alerts we configure will be used to pick up the database role change and initiate a relevant job, based on the alert condition met. 		Thirdly, the relevant job executed will carry out the necessary task to start the report server service and restore the encryption keys.		Below I’ll set out what jobs we need, their purpose, when to use them (or when they are called), which side of the topology the need to operate from and how to define them. All jobs and alerts should be defined on both servers.		RS Failover - Initialisation Jobs	Job Name:Reporting Service Switch Live – MaintenancePurpose:Executed from the current principle server, this job forces the ReportServer & ReportServerTempDB database mirror partner to become the principle.When to use:This job should be used to initiate the service switch to the partner, when maintenance tasks need to be carried out on the current principle, or other needs require that the service run from the partner. e.g. both partner servers are operating as normal, but users cannot connect to the principle, but CAN connect to the backup/failover mirror partner.Definition:USE [msdb]	GO	/****** Object: Job [Switch (Live) Reporting Service – Maintenance] Script Date: 02/25/2010 16:13:02 ******/	BEGIN TRANSACTION	DECLARE @ReturnCode INT	SELECT @ReturnCode = 0	/****** Object: JobCategory [Database Mirroring] Script Date: 02/25/2010 16:13:02 ******/	IF NOT EXISTS (SELECT name FROM msdb.dbo.syscategories WHERE name=N'Database Mirroring' AND category_class=1)	BEGIN	EXEC @ReturnCode = msdb.dbo.sp_add_category @class=N'JOB', @type=N'LOCAL', @name=N'Database Mirroring'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback		END		DECLARE @jobId BINARY(16)	EXEC @ReturnCode = msdb.dbo.sp_add_job @job_name=N'Reporting Service Switch Live – Maintenance', 			@enabled=1, 			@notify_level_eventlog=0, 			@notify_level_email=0, 			@notify_level_netsend=0, 			@notify_level_page=0, 			@delete_level=0, 			@description=N'Executed from the current principle server, this job forces the ReportServer & ReportServerTempDB database mirror partner to become the principle.', 			@category_name=N'Database Mirroring', 			@owner_login_name=N'FORTHPORTS\David.Lumley', @job_id = @jobId OUTPUT	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Failover ReportServer Database] Script Date: 02/25/2010 16:13:03 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Failover ReportServer Database', 			@step_id=1, 			@cmdexec_success_code=0, 			@on_success_action=3, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'TSQL', 			@command=N'ALTER DATABASE ReportServer SET PARTNER FAILOVER	', 			@database_name=N'master', 			@flags=0	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Failover ReportServerTempDB] Script Date: 02/25/2010 16:13:04 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Failover ReportServerTempDB', 			@step_id=2, 			@cmdexec_success_code=0, 			@on_success_action=1, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'TSQL', 			@command=N'ALTER DATABASE ReportServerTempDB SET PARTNER FAILOVER	GO', 			@database_name=N'master', 			@flags=0	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_update_job @job_id = @jobId, @start_step_id = 1	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_add_jobserver @job_id = @jobId, @server_name = N'(local)'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	COMMIT TRANSACTION	GOTO EndSave	QuitWithRollback:	 IF (@@TRANCOUNT > 0) ROLLBACK TRANSACTION	EndSave:	
	Job Name:Reporting Services Force Live – DRPurpose:Executed from backup/failover server, when the Principle server fails, and the mirror partner must be forced live it forces the ReportServer & ReportServerTempDB databases on the current backup/failover mirror server to become the principle When to use:When the Principle server fails, and the mirror partner must be forced live.	Note: it’s important to be aware that iIf your using database mirroring in High-Performance mode, then forcing the service (switching the mirror to become the principle database), could potentially restore the mirror database, with transaction missing, due to not having received the transaction on the current principle.		If your using database mirroring in High-Safety mode, then this is unlikely to be an issue as all transactions should have been written to the mirror, before being committed at principle *provided that the databases were synchronized*. 		It’s also important to remember that when the failed server is restore, you will have to resume the mirroring sessions or reconfigure the database mirroring session for the databases. (the databases on the failed server, will automatically become the mirror when the server is restored).	Definition:USE [msdb]	GO	/****** Object: Job [Switch (Live) Reporting Service – Maintenance] Script Date: 02/25/2010 16:13:02 ******/	BEGIN TRANSACTION	DECLARE @ReturnCode INT	SELECT @ReturnCode = 0	/****** Object: JobCategory [Database Mirroring] Script Date: 02/25/2010 16:13:02 ******/	IF NOT EXISTS (SELECT name FROM msdb.dbo.syscategories WHERE name=N'Database Mirroring' AND category_class=1)	BEGIN	EXEC @ReturnCode = msdb.dbo.sp_add_category @class=N'JOB', @type=N'LOCAL', @name=N'Database Mirroring'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback		END		DECLARE @jobId BINARY(16)	EXEC @ReturnCode = msdb.dbo.sp_add_job @job_name=N'Reporting Services Force Live – DR', 			@enabled=1, 			@notify_level_eventlog=0, 			@notify_level_email=0, 			@notify_level_netsend=0, 			@notify_level_page=0, 			@delete_level=0, 			@description=N'Executed from the current principle server, this job forces the ReportServer & ReportServerTempDB database mirror partner to become the principle.', 			@category_name=N'Database Mirroring', 			@owner_login_name=N'FORTHPORTS\David.Lumley', @job_id = @jobId OUTPUT	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Failover ReportServer Database] Script Date: 02/25/2010 16:13:03 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Failover ReportServer Database', 			@step_id=1, 			@cmdexec_success_code=0, 			@on_success_action=3, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'TSQL', 			@command=N'ALTER DATABASE ReportServer SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS	', 			@database_name=N'master', 			@flags=0	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Failover ReportServerTempDB] Script Date: 02/25/2010 16:13:04 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Failover ReportServerTempDB', 			@step_id=2, 			@cmdexec_success_code=0, 			@on_success_action=1, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'TSQL', 			@command=N'ALTER DATABASE ReportServerTempDB SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS	GO', 			@database_name=N'master', 			@flags=0	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_update_job @job_id = @jobId, @start_step_id = 1	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_add_jobserver @job_id = @jobId, @server_name = N'(local)'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	COMMIT TRANSACTION	GOTO EndSave	QuitWithRollback:	 IF (@@TRANCOUNT > 0) ROLLBACK TRANSACTION	EndSave:		
RS Failover Process Control - Jobs		Important Note:For the Reporting Services – Activate RS & Reporting Services – De-activate RS		The key function of this job is start/stop the reporting service on the server. As such the executing user needs to have permission to carry out such a task, so consider using a service account, which you will need to define as a credential under security and then add as a proxy account to Operating System (cmdExec) under SQL Agent > Proxies.		Below is the T-SQL to set up a credential 		USE [master]	GO	CREATE CREDENTIAL [SQLTest.Job] WITH IDENTITY = N'FORTHPORTS\SQLTest.Job', SECRET = N'sql999'	GO		Below is the T-SQL to add the credential as a proxy account to Operating System (cmdExec)		USE [msdb]	GO	EXEC msdb.dbo.sp_add_proxy @proxy_name=N'SQLTest.Job',@credential_name=N'SQLTest.Job', 			@enabled=1	GO	EXEC msdb.dbo.sp_grant_proxy_to_subsystem @proxy_name=N'SQLTest.Job', @subsystem_id=3	GO		To restore the encryption keys in Reporting Services – Activate RS is a OS command line, that will be executed by the job. The command requires to encryption key password, which is in clear text, so be aware that anyone who can view/edit the job can also see the encryption key password. As such, you may want to consider who has access to the job if encryption key security is important.
	Job Name:Reporting Services – Activate RSPurpose:When triggered by the alert to execute, this job carries out the necessary tasks to switch the reporting service onto the current machine. These will include:	Starting the reporting service on the current machine	Delay for 10 seconds to allow RS to carry out necessary start up tasks. (Note: I initially tried this without the delay, but it always failed).	Deletes Reporting Service instance keys from keys from the client table in ReportServer Database. (this is important as otherwise RS think that we are trying to set up a RS web farm.)	Restoring the encryption keysWhen to use:Automatically called when an information alert is raised where the ReportServer database is set to the Principle role on the current machine.Definition:USE [msdb]	GO	/****** Object: Job [Reporting Services - Activate RS] Script Date: 03/01/2010 14:13:42 ******/	BEGIN TRANSACTION	DECLARE @ReturnCode INT	SELECT @ReturnCode = 0	/****** Object: JobCategory [[Uncategorized (Local)]]] Script Date: 03/01/2010 14:13:42 ******/	IF NOT EXISTS (SELECT name FROM msdb.dbo.syscategories WHERE name=N'[Uncategorized (Local)]' AND category_class=1)	BEGIN	EXEC @ReturnCode = msdb.dbo.sp_add_category @class=N'JOB', @type=N'LOCAL', @name=N'[Uncategorized (Local)]'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback		END		DECLARE @jobId BINARY(16)	EXEC @ReturnCode = msdb.dbo.sp_add_job @job_name=N'Reporting Services - Activate RS', 			@enabled=1, 			@notify_level_eventlog=0, 			@notify_level_email=0, 			@notify_level_netsend=0, 			@notify_level_page=0, 			@delete_level=0, 			@description=N'Starts SSRS on the local machine. Initialises the instance and restore the data encryption keys to the instance.', 			@category_name=N'[Uncategorized (Local)]', 			@owner_login_name=N'FORTHPORTS\SQLTest.Job', @job_id = @jobId OUTPUT	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Start Reporting Services] Script Date: 03/01/2010 14:13:42 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Start Reporting Services', 			@step_id=1, 			@cmdexec_success_code=0, 			@on_success_action=3, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'CmdExec', 			@command=N'net start ReportServer', 			@flags=0, 			@proxy_name=N'SQLTest.Job'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Wait 10 seconds] Script Date: 03/01/2010 14:13:42 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Wait 10 seconds', 			@step_id=2, 			@cmdexec_success_code=0, 			@on_success_action=3, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'TSQL', 			@command=N'WAITFOR DELAY ''00:00:10''', 			@database_name=N'master', 			@flags=0	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Delete Report Server Keys] Script Date: 03/01/2010 14:13:42 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Delete Report Server Keys', 			@step_id=3, 			@cmdexec_success_code=0, 			@on_success_action=3, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'TSQL', 			@command=N'DELETE FROM Keys WHERE client > -1', 			@database_name=N'ReportServer', 			@flags=0	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Restore Report Server Encryption Key] Script Date: 03/01/2010 14:13:43 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Restore Report Server Encryption Key', 			@step_id=4, 			@cmdexec_success_code=0, 			@on_success_action=1, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=1, 			@retry_interval=1, 			@os_run_priority=0, @subsystem=N'CmdExec', 			@command=N'echo Y | "C:\Program Files (x86)\Microsoft SQL Server\90\Tools\binn\RSKeymgmt.exe" -a -f "C:\SQL Server Files\SSRS\sqltest01-ssrs-encr-key.snk" -p "pa$$w0rd"', 			@flags=0, 			@proxy_name=N'SQLTest.Job'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_update_job @job_id = @jobId, @start_step_id = 1	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_add_jobserver @job_id = @jobId, @server_name = N'(local)'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	COMMIT TRANSACTION	GOTO EndSave	QuitWithRollback:	 IF (@@TRANCOUNT > 0) ROLLBACK TRANSACTION	EndSave:	
		Job Name:Reporting Services – De-activate RSPurpose:When triggered by the alert to execute, this job carries out the necessary tasks to switch the reporting service onto the current machine. This will be to stop reporting services When to use:Automatically called when an information alert is raised where the ReportServer database is set to the Mirror role on the current machine.Definition:USE [msdb]	GO	/****** Object: Job [Switch (Stanby) - ReportServer] Script Date: 02/26/2010 16:50:50 ******/	BEGIN TRANSACTION	DECLARE @ReturnCode INT	SELECT @ReturnCode = 0	/****** Object: JobCategory [[Uncategorized (Local)]]] Script Date: 02/26/2010 16:50:51 ******/	IF NOT EXISTS (SELECT name FROM msdb.dbo.syscategories WHERE name=N'[Uncategorized (Local)]' AND category_class=1)	BEGIN	EXEC @ReturnCode = msdb.dbo.sp_add_category @class=N'JOB', @type=N'LOCAL', @name=N'[Uncategorized (Local)]'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback		END		DECLARE @jobId BINARY(16)	EXEC @ReturnCode = msdb.dbo.sp_add_job @job_name=N'Switch (Stanby) - ReportServer', 			@enabled=1, 			@notify_level_eventlog=0, 			@notify_level_email=0, 			@notify_level_netsend=0, 			@notify_level_page=0, 			@delete_level=0, 			@description=N'No description available.', 			@category_name=N'[Uncategorized (Local)]', 			@owner_login_name=N'FORTHPORTS\sqlnordic.svc', @job_id = @jobId OUTPUT	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	/****** Object: Step [Stop Reporting Services] Script Date: 02/26/2010 16:50:52 ******/	EXEC @ReturnCode = msdb.dbo.sp_add_jobstep @job_id=@jobId, @step_name=N'Stop Reporting Services', 			@step_id=1, 			@cmdexec_success_code=0, 			@on_success_action=1, 			@on_success_step_id=0, 			@on_fail_action=2, 			@on_fail_step_id=0, 			@retry_attempts=0, 			@retry_interval=0, 			@os_run_priority=0, @subsystem=N'CmdExec', 			@command=N'net stop ReportServer$POT_NORDIC', 			@flags=0, 			@proxy_name=N'sqlnordic.job'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_update_job @job_id = @jobId, @start_step_id = 1	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	EXEC @ReturnCode = msdb.dbo.sp_add_jobserver @job_id = @jobId, @server_name = N'(local)'	IF (@@ERROR <> 0 OR @ReturnCode <> 0) GOTO QuitWithRollback	COMMIT TRANSACTION	GOTO EndSave	QuitWithRollback:	 IF (@@TRANCOUNT > 0) ROLLBACK TRANSACTION	EndSave:	
RS Failover Process Control - Alerts		Important Note:If you want to define your alerts by using T-SQL as I have done, then before define the alerts on each server, you will need to find out what the Job ID is for each each.		You can find this by looking at the sysjob table in the msdb database. (Note: Job ID will be different on each machine!)		SELECT [job_id] ,[name] ,[description] FROM [msdb].[dbo].[sysjobs]	where [name] like 'Reporting Services%'		For defining the alerts, you may find it easier and quicker to use the GUI in SSMS, as you can select the job from a pull down list.		
		Alert Name:ReportServerTempDB – Switched to PrinciplePurpose:This alert is to provide a ‘trigger’ of sorts, to kick off the Reporting Services – Activate RS job, which will start the reporting service on the server and restore the encryption keys.When to use:Automatically triggered when the event description keyword is found in the SQL Server event log.Definition:USE [msdb]	GO	/****** Object: Alert [ReportServerTempDB – Switched to Principle] Script Date: 03/01/2010 13:07:52 ******/	EXEC msdb.dbo.sp_add_alert @name=N'ReportServerTempDB – Switched to Principle', 			@message_id=0, 			@severity=10, 			@enabled=1, 			@delay_between_responses=0, 			@include_event_description_in=1, 			@event_description_keyword=N'"ReportServerTempDB" is changing roles from "MIRROR" to "PRINCIPAL" due to Failover from partner', 			@category_name=N'[Uncategorized]', 			@job_id=N'5ebac8b7-ed3f-4569-920f-46f1c059b8fb
	Alert Name:ReportServerTempDB – Forced to PrinciplePurpose:This alert is to provide a ‘trigger’ of sorts, to kick off the Reporting Services – Activate RS job, which will start the reporting service on the server and restore the encryption keys.When to use:Automatically triggered when the event description keyword is found in the SQL Server event log.Definition:USE [msdb]	GO	/****** Object: Alert [ReportServerTempDB – Forced to Principle] Script Date: 03/01/2010 13:06:50 ******/	EXEC msdb.dbo.sp_add_alert @name=N'ReportServerTempDB – Forced to Principle', 			@message_id=0, 			@severity=10, 			@enabled=1, 			@delay_between_responses=0, 			@include_event_description_in=1, 			@event_description_keyword=N'"ReportServerTempDB" is changing roles from "MIRROR" to "PRINCIPAL" due to Force_Service_Allow_Data_', 			@category_name=N'[Uncategorized]', 			@job_id=N'5ebac8b7-ed3f-4569-920f-46f1c059b8fb'
		Alert Name:ReportServerTempDB – Switched to MirrorPurpose:This alert is to provide a ‘trigger’ of sorts, to kick off the Reporting Services – De-activate RS job, which will stop the reporting service on the server.When to use:Automatically triggered when the event description keyword is found in the SQL Server event log.Definition:USE [msdb]	GO	/****** Object: Alert [ReportServerTempDB – Switched to Mirror] Script Date: 03/01/2010 13:07:24 ******/	EXEC msdb.dbo.sp_add_alert @name=N'ReportServerTempDB – Switched to Mirror', 			@message_id=0, 			@severity=10, 			@enabled=1, 			@delay_between_responses=0, 			@include_event_description_in=1, 			@event_description_keyword=N'"ReportServerTempDB" is changing roles from "PRINCIPAL" to "MIRROR" due to Failover.', 			@category_name=N'[Uncategorized]', 			@job_id=N'd2a3fb16-63d7-44ff-9ae0-0d0396e85e5d'
			Now you can test a switch over by starting the Reporting Service Switch Live – Maintenance on SQLTEST01.		After a short delay the Reporting service should stop on SQLTEST01 and be fully restored on SQLTEST02.	If you want to build in automated failover, then you’ll need to 	configure a witness server	Configure the mirroring endpoint on the witness server (this will be done for you if you add a witness, when you setup database mirroring)	Pause Database mirroring, Add the witness server to the database mirror session and the resume mirroring.	You’ll need to configure an additional alert with a response to execute the job : Reporting Services – Activate RS		This alert should only be defined if you intend to use a witness server for automatic failover.	Alert Name:ReportServerTempDB –Switched to Principle (AUTO) Purpose:This alert is to provide a ‘trigger’ of sorts, to kick off the Reporting Services – Activate RS job, which will start the reporting service on the server and restore the encryption keys.When to use:Automatically triggered when the event description keyword is found in the SQL Server event log.Definition:USE [msdb]	GO	/****** Object: Alert [ReportServerTempDB – Forced to Principle] Script Date: 02/26/2010 16:35:03 ******/	EXEC msdb.dbo.sp_add_alert @name=N'ReportServerTempDB – Forced to Principle', 			@message_id=0, 			@severity=10, 			@enabled=1, 			@delay_between_responses=0, 			@include_event_description_in=1, 			@event_description_keyword=N'"ReportServerTempDB" is changing roles from "MIRROR" to "PRINCIPAL" due Auto Failover', 			@category_name=N'[Uncategorized]'			--,@job_id=N'00000000-0000-0000-0000-000000000000'
Conclusion	Once the jobs and alerts have been setup, the automation process is in place, an can follow 2 tracks:		Maintenance FailoverThis method is used if you need to failover the reporting service due to required maintenance on the current live server, when both servers are up.
	Current Principle Server (e.g. SQLTEST01)Current Mirror Server (e.g. SQLTEST02)	SSRS Started	ReportServer Database: Principle	 ReportServerTempDB Database: Principle		SSRS Stopped	ReportServer Database: Mirror	 ReportServerTempDB Database: Mirror	User StepsJob Reporting Service Switch Live – Maintenance executed by server adminThe steps below are automaticReportServer & ReportServerTempDB, become mirror databasesReportServer & ReportServerTempDB, become Principle databasesAlert condition ReportServerTempDB – Switched to Mirror metAlert condition ReportServerTempDB – Switched to Principle metJob Reporting Services – De-activate RS invoked by alert and executed using proxy account.	SSRS Service Stopped on the machine.Job Reporting Services – Activate RS invoked by alert and executed using proxy account.	SSRS Service started on the machine 	Process delayed for 10 seconds	Instance keys from the client table in ReportServer Database deleted (this is important as otherwise RS think that we are trying to set up a RS web farm.)	SSRS Encryption key restore to SSRSSSRS Stopped	ReportServer Database: Mirror	 ReportServerTempDB Database: Mirror	SSRS Started	ReportServer Database: Principle	 ReportServerTempDB Database: Principle	
		Forced FailoverThis method is for forcing the reporting service and databases onto the backup server, due to a failure on the primary where the database server is unavailable.Initiate by running the Job on the current mirror database server.	Current Principle Server (e.g. SQLTEST01)Current Mirror Server (e.g. SQLTEST02)	Server Unavailable 		SSRS Stopped	ReportServer Database: Mirror	 ReportServerTempDB Database: Mirror	User StepsJob Reporting Services Force Live – DR executed by server adminThe steps below are automaticReportServer & ReportServerTempDB, become Principle databases using the FORCE SERVICE ALLOW DATA LOSS command.Alert condition ReportServerTempDB – Forced to Principle metJob Reporting Services – Activate RS invoked by alert and executed using proxy account.	SSRS Service started on the machine 	Process delayed for 10 seconds	Instance keys from the client table in ReportServer Database deleted (this is important as otherwise RS think that we are trying to set up a RS web farm.)	SSRS Encryption key restore to SSRSSSRS Started	ReportServer Database: Principle	 ReportServerTempDB Database: Principle	Important!: When the server is restored, the ReportServer & ReportServerTempDB will automatically be reassigned to be the mirror databasesUser StepsOn the database mirroring page, you must resume mirroring (if appropriate) for both the ReportServer and ReportServerTempDB databases.				You will be prompted to acknowledge the following potential loss of transactions. (this theoretically isn’t an issue if you are using DB Mirroring in high protection mode).			Alternatively – reconfigure the database mirroring.	
			And that is it!		On my test servers, the switch over took literally a second. So this is a fast and effective method!		

	Authored By: David Lumley
	
	Email: djitsolutions@hotmail.com

	Author: David Lumley (MCTIP: Business Intelligence Developer)
Email: djitsolutions@hotmail.com
	
	- 20 -

image2.png
¥ Reporting Services Configura

Configure Report Server

& comeet 2 efresh

(@ server status Report Server Status

s the Repating Sices Confgration Gl t confiure areprt server delement, Clck an e s the naviatio pane
@ Repor: server tuslrecory t00pen a confuraion e

Usethis pag o st o sop the Report Servr Windons s,
(@ Reortanager sl Dvectory

18 windows servie centey

Instance Properties

Web Service danty
2 v st e wesLseRER

Instance I0: Ms50L3

@ patsbase setp
it o

@ sharspoint negraton Service tats Ruming

st ston
@ encryteniers
Legend
@ rsanion

Configured

A\ Ema Settngs ot confgured
Opions cafiguration
A\ Evecution Account

Recommendzd configuration

Not supported n the current mods

o

image3.png
B Reporting Services Configuration Manag

QLTESTO1\MSSQLSERVER

Configure Report Server

Scomes 2 Refresh

@ serversesus
@ Report sever vitusl Diectory
(@ Report Mansger Vitusl Dectory
(2 windows Sarvice denty

@ web Service denty

@ DstabsseSetup

@ sharspoint negraton

@ Encrytenters

@ nwsiaston
. i setings

@ Ececuion account

Encryption Key

The encryption key for report server safeguards senstive nformation stored in the report server
database. It s Impartant to protect this ey against disclosure or theft

Encryption key maintenance.

Encryption Key Information HE

Restore Specify the security passuiord and fl used to backup or restare your
Repart Server encryption key.
change.

i Youruatbacupthe key Esssword g

Leyie [C\5QL erver Fies\5SRSisakest01-ssrs-encr-ke
et crnpodconton = B =

Delete o Concel

image4.png
satest01

Connection:
FORTHPORTS\David Lumley

8 View comection proertes

Progress.
Ready

S scrpt ~ [y Help
Ensure that securty s corfigured for mitoing this
database. Configue Securty ..
Servernetmork addresses
Bincpal: TCP//SQLTESTO' fotrports net 50 Stat Mirorng
Mo Pose
== Bemove Nimorng
Note: Use fuly-quafied TCP addresses. For example: Fafover
TCP /s com abe com 5022 [oo]
Opersting mode
High performance (asynchronous) ~ Commit changes at the principal and then transfer them
tothe mimor.

® High safety without automatic falover (synchronous) - Aays commit changes at both the
principal and mior

Figh safety with automatc falover (synchronous) - Requies a winess server instance
Commt changes at both the principal and mior both are avaiable. The winess cortrols
‘utomatic falover o the mitor the principal becomes unavaable.

Status: ‘This database has not been configured for Refresh

mimoring

image5.png
Connection

Server
satest0l

Connecton:
FORTHPORTS\David Lumley

9 View connection propetes

Progress
Ready

Ssewt - ek

Excouteiob

Repoting Services - Actve RS (Uncategarized (Local)
[tewser.]

Notfy opersos

Opertorist

Operator

Emal__Pager

Net S

TibuySQLAdmins

5] 5]

image6.png
Connection

Server
satest02

Connecton:
FORTHPORTS\David Lumley

8 View comection proertes

Progress
Ready

Ssowt ~ [Hep

‘Ensure that securtty is configured for mimoring this
Gaabase

Servernetmork addresses
Brncpa TCP//SQUTES T fotpotonet®0, | St lios |
Mior: TCP//SQLTESTO1 forthports net:50: %j
Winess: —
O g e For ool [oow)

Opersting mode

Figh perfomance (asynchronous) - Commit changes at the principal and then transfer them
tothe miror.

Figh safety wihout automatic faiover (synchronous)
principal and mior

ways commit changes at both the

High safety wth automati falover (@ynchronous) - Requires a winess server instance.
Commt changes at both the principal and mior both are avaiable. The winess cortrols
‘utomatic falover o the mitor the principal becomes unavaable.

Status: Paused: database mimoring for this database is
suspended

image7.png
Database Properties

1F you resume mimoring for tis database, and if transactons are committed at ‘SQLTESTOY but the log
was not sent o the former mirror server instance, the transactions are roled back. This situaton can
‘occur after the folowing sequence of events:

(1) The connection between the princpal and mior server instances s ost.
(2) The princpal continues to commit transactions locally but cannot send the log records to the mirror.

(3) AFORCE_SERVICE_ALLOW_DATA_LOSS command forces service to the mior database, which
‘2ssumes the princpal ole.

(4) The conection between the partners s reestabished, the originalprincpalserver assumes the miror
role, and mioring s suspended.

Do you want to resume miroring and rol back any transactions committed at server instance SQLTESTOY'
butnot sent to server instance 'sltest02?

1F you answer Yes,” any transactions whose log is unsent wil be lost. If you answer ™No,” you can
remove mioring and bring the database at ‘SQLTESTOY'online, to help you identify those transactions.

' =)

image1.jpeg

